最专业的美发工作室,让您的美丽从头开始
xk星空体育面对大型科技公司的算力和数据优势,小型AI初创公司需要专注于构建与大公司不同的、具有独特价值的产品和服务。
②数据作为可出售资产常被高估,真正的价值在于如何利用数据,而非数据本身。
③技术进步和市场反应存在不确定性,风险投资模型接受一定比例的失败作为创新过程的一部分。
④谷歌和微软等企业为追求利润不惜牺牲国家和全球利益,同时要求政府限制技术的开放性,揭示出资本主义黑暗面的道德和策略矛盾。
⑤历史上的重大技术进步往往伴随着金融泡沫,这是新技术推广的自然组成部分。
⑥互联网的发展经历了从开放到封闭的过程,人工智能的发展可能面临类似的选择,这将对其普及和创新产生深远影响。
⑦技术创新尽管会伴随着投机和泡沫,但终推动了社会进步和经济增长,应被视为积极的社会力量。
据国外媒体报道,美国风险投资公司a16z日前在视频平台Youtube上发布了联合创始人马克·安德森(Marc Andreessen)和本·霍洛维茨(Ben Horowitz)拍摄的视频。
在这段对话视频中,安德森与霍洛维茨探讨了面对大型科技公司拥有了算力和数据规模优势,小型人工智能初创公司如何与之竞争;揭示了数据作为可出售资产被高估的原因;以及人工智能热潮与本世纪初互联网浪潮的异同之处。
2009年,安德森和霍洛维茨联合创办了风险投资公司安德森·霍洛维茨基金。因为这家风司名称的第一个字母A和最后一个字母Z之间有16个字母,所以简称为a16z。还有一种说法称,只要对参投对象满意,这家风司会参与初创公司从A轮到Z轮的所有融资。
:今天我们将讨论一个非常热门的话题--人工智能。我们将集中讨论截至到2024年4月的人工智能产业现状。我们希望这将对任何在初创公司工作的人或在大型公司工作的人都有所帮助。我们一如既往地在社交媒体平台X上征集了话题,收到了许多精彩的提问,因此我们准备了一系列听众问答,现在就让我们直接进入正题。首先的三个问题都聚焦于同一主题:一是人工智能初创公司如何与大公司竞争。面对即将到来的人工智能时代,初创公司的创始人们目前应该专注于构建什么?二是小型人工智能初创公司如何与拥有巨大算力和数据规模优势的老牌科技企业竞争?三是对于依赖OpenAI等公司的技术的初创公司,哪些公司能够从基础模型未来的指数级改进中受益,哪些公司又可能因此而失败?
我先从第一个问题开始,然后再深入讨论。OpenAI首席执行官山姆·奥特曼(Sam Altman)最近在一次采访中提出了一些我本人非常认同的观点。他的观点大致是,作为初创公司的创始人,应当预料到大型人工智能公司推出的基础模型会大幅改进,并应就此提前制定出应对策略。如果当前的基础模型性能提升100倍,初创公司的创始人们会有什么反应?他们应当对此感到兴奋,因为这对自己的公司构成利好;还是应当感到担忧,因为这可能会带来一系列的问题?你对此有何看法?
:我基本认同奥特曼的这个观点,但也有一些细节需要注意。从他的角度来看,他可能在劝阻人们不要自己构建基础模型,我并不完全同意这一点。许多正在构建基础模型的初创公司实际上做得非常好。出现这种情况的原因有很多,首先是模型架构的差异,这决定了模型的智能程度、响应速度以及在特定领域的性能。这不仅适用于文本模型,也适用于图像模型。不同类型的图像对提示词的反应各不相同。例如,如果你向两款模型提出相同的问题,它们会根据用例以非常不同的方式作出反应。其次,模型蒸馏(distillation,能够把大模型的知识迁移到更小、更高效的模型中,在保持性能的同时降低算力和内存需求)技术的出现。OpenAI可以开发全球最大、最智能的模型,初创公司则可以推出蒸馏版本的模型,用更低的成本实现非常高的智能。鉴于此,尽管大公司的模型无疑会变得更好,但如果初创公司构建的模型在某些方面有所不同,或者专注于不同的领域,那么即使大公司的模型越来越出色,也不一定会影响这些初创公司。
如果初创公司选择正面硬刚大型科技公司,可能会遇到真正的问题,因为后者银行账户中储备着巨额的现金。但如果初创公司从事的工作足够独特,或者专注于不同的领域,情况则会完全不同。举例来说,日前推出开源模型DBRX的初创公司Databricks,尽管这家公司也开发了一款基础模型,但它采用非常特定的方式把这款基础模型与自己领先的数据平台结合在一起使用。即便是OpenAI的模型变得更好,也不足以对专注于特定领域的人工智能模型构成真正的威胁。人工智能语音克隆初创公司ElevenLabs的语音模型已经嵌入到每个人的人工智能堆栈中。所有人都把该公司的语音模型作为人工智能堆栈的一部分使用。还有,ElevenLabs的语音模型拥有开发者接口。这家初创公司专注于自己从事的事情。尽管一些初创公司表面上看起来是在与OpenAI、谷歌或微软竞争,但实际上并没有真正的竞争,我认为此类公司前景广阔。
:我们更深入地探讨一下“上帝模型”(God models)是否会出色100倍的问题。你认为大模型,即所谓的“上帝模型”,线倍吗?霍洛维茨
:我倾向于认为,大语言模型的性能确实有可能提升100倍。以我们目前对大语言模型的了解,尽管它们已经非常先进,但真正的区别可能只有深入研究它们的专业人士才能察觉。如果我们谈论的是性能提升100倍,那么按理说,我们应当能够看到某些模型在性能上与其他模型明显拉开差距。不过对在日常生活中使用(如提问和获取信息)大语言模型的普通用户而言,这种提升可能不会那么明显。安德森
:我们期望的提升可能包括知识的广度和能力的提高。我认为在某些方面,如模型对于不同问题的响应速度和知识面,确实有可能实现显著的进步。此外,输出的精细度和质量也将是提升的关键。这包括减少错误信息,即减少‘幻觉’,以及确保回答具有事实依据。霍洛维茨
:我赞同这些方面的表现将会大幅提升的观点,因为人工智能技术正朝着这个方向迅速发展。目前,我们面临的挑战是模型的对齐问题,即模型虽然越来越智能,但它们并不总是能够准确表达所知信息。这种对齐问题在某种程度上也限制了模型的智能表现。另一个问题是,我们是否需要一个突破性的进展,从而从当前的人工智能--我称之为“人工人类智能”(artificial human intelligence)--过渡到更高级的“通用人工智能”(artificial general intelligence)。所谓“人工人类智能,”指的是人工智能在模仿人类认知和语言使用方面已经达到了令人惊叹的水平,它能够执行许多人类能够完成的任务。但如果要达到更广泛的智能水平,我们可能需要某种形式的技术突破。
如果我们目前的技术已经接近极限,那么在某些方面它可能不会实现100倍的提升。因为与人类相比,它们已经相当不错了。尽管如此,人工智能在知识掌握、减少幻觉以及在多个维度上的表现上,仍有望实现巨大的飞跃。
:业界流传着一张图表,我记不太清它的具体坐标轴,但它大致展示了不同人工智能模型性能提升的情况。在一些测试中,人工智能模型的得分仅仅略高于普通人。这并不令人意外,因为人工智能的训练完全基于人类数据。有人反驳说,这些测试是否太过简单了?是否需要更复杂的测试,就像SAT考试一样来真正衡量人工智能的能力?如果在SAT考试当中,许多学生在数学和语言部分都得到800分的满分,这是否意味着评分标准过于局限?我们是否需要一种能够真正测试出爱因斯坦级别智慧的测试?现有的测试方法固然有其价值,但我们可以设想一种能够准确区分超高智商人群的SAT考试,一种能够真正衡量人工智能超越人类水平推理能力的测试。霍洛维茨
:事实确实如此星空体育下载。人工智能可能需要这样的测试。此外,还有一个经常被人们提出的问题,也是我们内部一直在讨论的问题,即我们是否需要采取更具挑衅性、更乐观、或者说更具科幻色彩的预测。当用来自互联网的数据训练一个语言模型时,互联网数据集的本质是什么?它实际上是一切的平均水平,它是人类活动的一种代表。由于人口中智力分布的特点,大多数内容处于中等水平,因此被用于训练模型的数据集平均而言代表了普通人类。使用此类数据,我们只能训练出一个非常普通的模型。互联网上大部分内容都由普通人创造,所以整体而言内容是普通的,生成的答案也是普通的。根据定义,互联网中的答案平均而言是普通的。如果用默认的提示词询问模型一些常规问题,如“地球是否绕着太阳转?”我们会得到一个普通的答案,这已经足够了。不过这里有一个关键点:虽然平均数据可能来自普通人,但数据集也包含了所有聪明人所写和所想的一切,所有这些内容都在数据集中。因此,这引出了如何通过特定的提示来引导人工智能,让它能够使用数据集中“超级天才”的内容进行训练。如果以不同的方式构建提示词,实际上可以引导人工智能沿着数据集中的不同路径前进,从而得到不同类型的答案。
平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
Copyright © 2012-2024 上海方锐云网络科技有限公司 版权所有 备案号:沪ICP备2023013812号-2